ELECTRICAL CIRCUITS LAB TERM PROJECT: ANALOG COMPUTER JONG WAN KO SEUNG YEOP KANG WAN MO KU #### **Contents** #### Chapter 1: Preliminary Work - Project Theory - Project Simulation - Breadboard Testing #### Chapter 2 : Development of Product - Soldering Modules - Testing Modules - Integrating Product - Testing Product - > Final Product - Demo #### Chapter 3 : Aftermath - Debugging & Additional Feature - Role Division - Project Timeline - Project Design Objective - Limitations and Further Improvements - Total Cost - Reference - ➤ Q & A # **CHAPTER 1 : Preliminary Work** #### Project Subject Designing an Analog Computer using OP Amps (Operational Amplifiers). Figure 1. Texas Instruments OP-amp (Left), GTE EA-22 Analog Computer(Right) Source: Adapted from [1], [2] #### **Project Theory** What is an OP Amp Figure 2. Circuit symbol for an operational amplifier (op amp), Source: Adapted from [4] #### Operational Amplifier Applications Figure 3. Summing (Left) and Inverting (Right) Operational Amplifier, Source: Adapted from [5][6] Figure 4. Log (Left) and Antilog (Right) Operational Amplifier, Source: Adapted from [5][6] How to implement Arithmetic Operations? Figure 5. Summing Operational Amplifier, Source: Adapted from [6] - Addition - Just input two Voltages Using the Summing Operational Amplifier How to implement Arithmetic Operations? Figure 6. Summing (Left) and Inverting Operational Amplifier, Source: Adapted from [6] #### Subtraction - Step 1. Invert one input using the Inverting Operational Amplifier - > Step 2. Sum the two inputs using the Summing Operational Amplifier ➤ How to implement Arithmetic Operations? > As we know addition in logarithmic operations is multiplication and subtraction in logarithmic operations is division. $$log a - log b = log (\frac{a}{b}) log a + log b = log (ab)$$ We also know that logarithmic values are the inverse of the exponential values. $$log_a^b = y \Leftrightarrow a^y = b$$ We will use these properties to implement multiplication and division. How to implement Arithmetic Operations? Figure 7. Log (Left), Summing (Middle) and Antilog (Right) Operational Amplifier, Source: Adapted from [5][6] #### Multiplication - Step 1. Scale both the inputs to logarithmic values - Step 2. Sum the two inputs using the Summing Operational Amplifier - Step 3. Scale them back to before the logarithmic values using exponential scale How to implement Arithmetic Operations? Figure 8. Log (Left), Summing (Middle) and Antilog (Right) Operational Amplifier, Source: Adapted from [5][6] Figure 9. Antilog Operational Amplifier, Source: Adapted from [5] - Division - > Step 1. Scale both the inputs to logarithmic values - Step 2. Invert one input using the Inverting Operational Amplifier - Step 3. Sum the two inputs using the Summing Operational Amplifier - Step 3. Scale them back to before the logarithmic values using exponential scale 2s+2f-2n=0 $$\mathbb{O}$$ Where $V_p = 0$, therefore $V_n = V_p = 0$ $$2s = \frac{v_s}{R_s} , 2f = \frac{v_o}{R_f} \otimes \mathbb{O}$$ $$v_n = V_p = 0 \text{ for constraints.}$$ Subtitute $\mathbb{O}(\mathbb{O})$ in \mathbb{O} $$\frac{v_s}{R_s} + \frac{v_o}{R_f} - 0 = 0$$ $$v_o = -\frac{R_f}{R_s} v_s$$ Figure 10. Inverting Operational Amplifier, Source: Made from Notability $$\frac{z_a + z_b + z_a + z_f}{R_b} = 0$$ $$\frac{v_n - v_a}{R_b} + \frac{v_n - v_b}{R_b} + \frac{v_n - v_o}{R_f} = 0$$ $$v_o = -\left(\frac{R_f}{R_a}v_a + \frac{R_f}{R_b}v_b\right)$$ if $R_a = R_a = R_s$ then $$v_o = -\frac{R_f}{R_s}(v_a + v_b)$$ Figure 11. Summing Operational Amplifier, Source: Made from Notability $$\frac{1}{10} - \frac{1}{10} - \frac{1}{10} = 0 \quad \text{or} \quad \frac{1}{10} = \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} = \frac{1}{10} + \frac{1}{10$$ Figure 12. Log Operational Amplifier, Source: Made from Notability $$\frac{2f + if + in = 0}{2F} = \frac{V_0 - 0}{R_f}$$ $$\frac{2}{4} + \frac{V_0}{R_f} = 0$$ $$\frac{2}{4} = \frac{V_0}{R_f}$$ \frac{$$ Figure 13. Antilog Operational Amplifier, Source: Made from Notability Figure 14. Multiplication, Source: Made from Notability Figure 15. Division, Source: Made from Notability $$\begin{split} \mathcal{V}_{n}' &= -V_{T} \ln \left(\frac{V_{s}}{I_{S}R} \right) \;, \; Antilog : \; V_{o} = -I_{S}Re^{\left(\frac{V_{s}}{V_{T}} \right)} \\ \mathcal{V}_{n}' &= -V_{T} \ln \left(\frac{V_{s}}{I_{S}R} \right) \;, \; V_{b}' = -V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ \mathcal{V}_{c} &= -\left(V_{s} + V_{b} \right) = V_{T} \ln \left(\frac{V_{s}}{I_{S}R} \right) + V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{s}}{I_{S}R} \right) + V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{s}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{s}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{s}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{s}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{s}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{s}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{s}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) - V_{T} \ln \left(\frac{V_{b}}{I_{S}R} \right) \\ &= V_{T} \ln \left(\frac{V_$$ Figure 16. Multiplication (Left) Division (Right), Source: Made from Notability ➤ How to make a Power Supply with Constant Voltage? Figure 17. Various Signals, Source: Adapted from [10] How to make a Power Supply with Constant Voltage? Figure 18. AC Voltage (Left) and DC Voltage (Right), Source: Adapted from [11] We need DC voltage for input! How to make a Power Supply with Constant Voltage? Figure 19. Full – Wave Rectifier Circuit, Source: Adapted from [9] $$V_R \approx \frac{1}{2} \cdot \frac{V_p - 2V_{D,on}}{R_L C_1 f_{in}}$$ - Ripple Voltage - For Constant Voltage we need to reduce the Ripple Voltage! How to make a Power Supply with Constant Voltage? Figure 20. Voltage Regulation using a Zener Diode, Source: Adapted from [9] ➤ How to make a Power Supply with Constant Voltage? Figure 21. Overall Power Supply Design, Source: Adapted from [9][11] Used Parts for the Project Figure 22. LM7812 Datasheet (Left) LM7912 Datasheet (Right), Source: Adapted from [7][8] #### **Project Simulation** Figure 23. Pspice Addition Circuit Schematic, Source: Adapted from [3] Figure 24. Pspice Simulation Result, Source: Adapted from [3] Figure 25. Pspice Subtraction Circuit Schematic, Source: Adapted from [3] Figure 26. Pspice Simulation Result, Source: Adapted from [3] Figure 27. Pspice Multiplication Circuit Schematic, Source: Adapted from [3] Figure 28. Pspice Simulation Result, Source: Adapted from [3] Figure 29. Pspice Division Circuit Schematic, Source: Adapted from [3] Figure 30. Pspice Simulation Result, Source: Adapted from [3] Figure 31. Pspice Power Supply Circuit Schematic, Source: Adapted from [3] Figure 32. Pspice Simulation Result (Power Supply Input Voltage of 220V AC @ 60Hz), Source: Adapted from [3] Figure 33. Pspice Simulation Result (Power Supply Input Voltage After passing the Transformer), Source: Adapted from [3] Figure 34. Pspice Simulation Result (Power Supply Input Voltage After passing the Bridge Diode), Source: Adapted from [3] Figure 35. Pspice Simulation Result (Power Supply Input Voltage After passing the Regulators), Source: Adapted from [3] Figure 36. Pspice Simulation Result (Power Supply outputting +12 and -12 from AC 220V), Source: Adapted from [3] Figure 37. Addition Module Testing on Breadboard Figure 38. Subtraction Module Testing on Breadboard Figure 39. Multiplication Module Testing on Breadboard Figure 40. Division Module Testing on Breadboard Figure 41. Power Supply and Addition Module Integration Test (Left) and Result (Right) Voltage Control Test On Breadboard Figure 42. Voltage Control Test with Potentiometer and Voltmeter Connected (Left) and Result (Right) Use 10K Ohms potentiometer to prevent high currents from passing. # **CHAPTER 2: DEVELOPMENT OF PRODUCT** ## Soldering Modules Figure 43. Pin Configuration for Each Module (Left) Perfboard Pin Reference (Right), Source: Made with PowerPoint Figure 44. Schematics for each for Multiplication and Division Module, Source: Adapted from [3] Figure 45. Addition Module Figure 46. Subtraction Module Figure 47. Multiplication Module Figure 48. Division Module Figure 49. Power Supply Module Pin Configuration, Source: Made with PowerPoint # Testing Modules Figure 50. Power Supply Module Figure 51. Testing Addition Module Figure 52. Testing Subtraction Module Figure 53. Testing Multiplication Module Figure 54. Testing Division Module Figure 55. Testing Power Supply Module #### Integrating Project Figure 56. Front Panel Module Input and Outputs of the Calculator, Source: Made with PowerPoint Figure 57. Front Panel designed on Fusion 360 (Left) and Printed Front Panel Using 3D Printer (Right), Source: [12] Courtesy of Jiwon Kang's help with the Front Panel. Figure 58. Soldering the Panel of the Calculator Figure 59. Front Panel (Left) Back Panel (Right) of the Calculator Figure 60. Soldering Power Pins (Left) Soldering I/O Pins (Right) of the Calculator Figure 61. Mainboard Layout, Source: Made with PowerPoint Figure 62. Pin Configuration for the Mainboard, Source: Made with PowerPoint Figure 63. Mainboard Module Arrangements of the Calculator Figure 64. Assembling the Calculator (Left) and the Final Product of the Calculator (Right) ## Testing Project How did we test our project? $$Relative\ Error = \frac{|Measured\ Value\ -True\ Value|}{True\ Value} \times 100\%$$ When the numerator is not "zero". Relative Error = $$\frac{|Measured\ Value\ -True\ Value|}{1 + Measured\ Value} \times 100\%$$ When the numerator is "zero". Table 1. Addition error, Source: Made with Excel | Input 1 | Input 2 | Output | True Value | % Error | |---------|---------|--------|------------|---------| | 1 | 0 | 1.021 | 1 | 2% | | 1 | 1 | 2.045 | 2 | 2% | | 1 | 2 | 3.038 | 3 | 1% | | 1 | 3 | 3.993 | 4 | 0% | | 1 | 4 | 5.03 | 5 | 1% | | 1 | 5 | 6 | 6 | 0% | | 1 | 6 | 7.033 | 7 | 0% | | 1 | 7 | 7.992 | 8 | 0% | | 1 | 8 | 8.974 | 9 | 0% | | 1 | 9 | 9.978 | 10 | 0% | | 1 | 10 | 10.482 | 11 | 5% | | 1 | 11 | 10.482 | 12 | 13% | | | 2% | | | | Figure 65. Testing the Addition Module (Left) Measured Values and errors in Addition Module (Right) Table 2. Subtraction error, Source: Made with Excel | Input 1 | Input 2 | Output | True Value | % Error | |---------|---------|---------|------------|---------| | 1 | 0 | 1.051 | 1 | 5% | | 1 | 1 | 0.053 | 0 | 5% | | 1 | 2 | -0.915 | -1 | 9% | | 1 | 3 | -1.934 | -2 | 3% | | 1 | 4 | -2.881 | -3 | 4% | | 1 | 5 | -3.883 | -4 | 3% | | 1 | 6 | -4.889 | -5 | 2% | | 1 | 7 | -5.878 | -6 | 2% | | 1 | 8 | -6.849 | -7 | 2% | | 1 | 9 | -7.847 | -8 | 2% | | 1 | 10 | -8.855 | -9 | 2% | | 1 | 11 | -9.837 | -10 | 2% | | 1 | 12 | -10.803 | -11 | 2% | | | 3% | | | | Figure 66. Testing the Subtraction Module (Left) Measured Values and errors in Subtraction Module (Right) Table 3. Multiplication error, Source: Made with Excel | Input 1 | Input 2 | Output | True Value | % Error | | | |---------|---------------|--------|------------|---------|--|--| | 0 | 0 | 2.999 | Infinite | Χ | | | | 0 | 1 | 0.018 | 0 | 2% | | | | 0 | 2 | 0.015 | 0 | 2% | | | | 0 | 3 | 0.013 | 0 | 1% | | | | 0 | 4 | 0.013 | 0 | 1% | | | | 0 | 5 | 0.011 | 0 | 1% | | | | 0 | 6 | 0.012 | 0 | 1% | | | | 0 | 7 | 0.012 | 0 | 1% | | | | 0 | 8 | 0.012 | 0 | 1% | | | | 0 | 9 | 0.012 | 0 | 1% | | | | 0 | 10 | 0.012 | 0 | 1% | | | | 0 | 11 | 0.012 | 0 | 1% | | | | 0 | 12 | 0.012 | 0 | 1% | | | | | Average Error | | | | | | Figure 67. Testing the Multiplication Module (Left) Measured Values and errors in Multiplication Module (Right) Table 4. Division error, Source: Made with Excel | Input 1 | Input 2 | Output | True Value | % Error | |---------|---------|------------|------------|---------| | 0 | 0 | 2.999 | Infinite | Χ | | 0 | 1 | 0.018 | 0 | 2% | | 0 | 2 | 0.015 | 0 | 2% | | 0 | 3 | 0.013 | 0 | 1% | | 0 | 4 | 0.013 | 0 | 1% | | 0 | 5 | 0.011 | 0 | 1% | | 0 | 6 | 0.012 | 0 | 1% | | 0 | 7 | 0.012 | 0 | 1% | | 0 | 8 | 0.012 | 0 | 1% | | 0 | 9 | 0.012 | 0 | 1% | | 0 | 10 | 0.012 | 0 | 1% | | 0 | 11 | 0.012 | 0 | 1% | | 0 | 12 | 0.012 | 0 | 1% | | | A | verage Err | or | 1% | Figure 68. Testing the Division Module (Left) Measured Values and errors in Division Module (Right) Table 5. Addition Saturation Table, Source: Made with Excel | With Excel | | | | | | |------------|----|--------|----|-----|--| | 0 | 11 | 10.48 | 11 | 5% | | | 0 | 12 | 10.48 | 12 | 13% | | | 9 | 2 | 10.487 | 11 | 5% | | | 9 | 3 | 10.487 | 12 | 13% | | Table 6. Subtraction Saturation Table, Source: Made with Excel | 12 | 0 | 10.483 | 12 | 13% | |----|----|--------|----|------| | 12 | 1 | 9.61 | 11 | 13% | | 12 | 2 | 8.583 | 10 | 14% | | 12 | 3 | 7.599 | 9 | 16% | | 12 | 4 | 6.661 | 8 | 17% | | 12 | 5 | 5.667 | 7 | 19% | | 12 | 6 | 4.691 | 6 | 22% | | 12 | 7 | 3.661 | 5 | 27% | | 12 | 8 | 2.655 | 4 | 34% | | 12 | 9 | 1.708 | 3 | 43% | | 12 | 10 | 0.742 | 2 | 63% | | 12 | 11 | -0.291 | 1 | 129% | | 12 | 12 | -1.216 | 0 | 122% | Table 7. Multiplication Saturation Table, Source: | Made with Excel | | | | | | |-----------------|----|-------|----|-----|--| | 1 | 11 | 10.47 | 11 | 5% | | | 1 | 12 | 10.47 | 12 | 13% | | | | _ | _ | | | | | 2 | 6 | 10.42 | 12 | 13% | | | | _ | | | | | | 6 | 2 | 10.44 | 12 | 13% | | | | | | | | | | 11 | 1 | 10.49 | 11 | 5% | | | | | | | | | | 12 | 1 | 10.49 | 12 | 13% | | Table 8. Division Saturation Table, Source: Made with Excel | 12 | 1 | 10.54 | 12.000 | 12% | |----|---|-------|--------|-----| Examples of Saturation Regions in each Modules. Table 9. Noteworthy Operation in the Division Module, Source: Made with Excel | Input 1 | Input 2 | Output | True Value | % Error | |---------|---------|--------|------------|---------| | 0 | 0 | 2.999 | Infinite | Χ | | | | | | | | Input 1 | Input 2 | Output | True Value | % Error | | 1 | 0 | 10.55 | Infinite | Χ | | | | | | | | Input 1 | Input 2 | Output | True Value | % Error | | 2 | 0 | 10.55 | Infinite | Χ | | | | | | | | Input 1 | Input 2 | Output | True Value | % Error | | 3 | 0 | 10.55 | Infinite | X | | Input 1 | Input 2 | Output | True Value | % Error | | 4 | 0 | 10.56 | Infinite | Χ | | | | | | | | Input 1 | Input 2 | Output | True Value | % Error | | 11 | 0 | 10.53 | Infinite | X | | Input 1 | Input 2 | Output | True Value | % Error | | 12 | 0 | 10.53 | Infinite | X | Noteworthy Operation, when the numerator is divided by "Zero". ## Testing Project (Cont.) Table 9. Summary of error rate, Source: Made with Excel | | Addition | Subtraction | Multiplication | Division | |--|----------|-------------|----------------|----------| | Total Average
Error for Each module | 4% | 5% | 8% | 3% | | Average Error Without
Saturation Region | 1% | 2% | 7% | 3% | | Overall Average Error Without Saturation 3% Region | | | | | Our objective was to make operation errors between 5% ~ 10%. ## Testing Project (Cont.) How accurate is it, when the values are calculated more than once? Figure 69. Best case: (7 + 2) / 9 = 1 (0.943, error 6%) (Left) Worst case: (3 * 3) - 10 = -1 (-2.136, error 114%) (Right) ## Final Product (Cont.) Figure 70.Front, Back, Top, Bottom (From Left to Right and Top to Bottom) ## Final Product (Cont.) Figure 71.Right Side of the Calculator (Left) and Right Side of the Calculator (Right) ### Demo > Short clip of our product demonstration. # Demo (Cont.) Demonstration ## **CHAPTER 3: AFTERMATH** ## Debugging & Additional Feature #### Task 1. Division Circuit - > The computer simulation did not work at all. - > Output false values. #### > Task 2. Multiplication Circuit - Dropdown needs to lower for less error - Ripple voltages Inputs #### Task 3. Power Module ➤ Power Module would get very hot and would sometimes explode for no apparent reason. #### Additional Feature Adding Lights for checking power. Figure 72. Unstable Circuit before debugged (Left) and Wrong output for 12 / 12 = 1 (Right), Source: Adapted from [3] Figure 73. Debugged Circuit Added, an inverting amplifier (Left) Correct output for 12 / 12 = 1 And (Right), Adapted from [3] | Trace Color | Trace Name | Yi | | | |-------------|------------------|-----------|--|--| | | X Values | 0.000 | | | | CURSOR 1,2 | V(U4B:OUT,U6B:-) | -288.270m | Trace Color | Trace Name | Y1 | |-------------|---------------|----------| | | X Values | 0.000 | | CURSOR 1,2 | V(D5:1,U6B:-) | 288.050m | | | | | | | | | | | | | Figure 74. Debugged Before - Top and After - Bottom (Left) I-V Characteristic for 1n60 Diode (Right), Source: Adapted from [3] Figure 75. Division Circuit (Left) Division Circuit Result (Right) Figure 76. Made a debugging module to debug the division module for better accuracy The aspect of the measured voltage values are different to the computer simulation. Figure 77. Division Circuit Schematic (Left) and Division Circuit (Right), Source: Adapted from [3] Tuned the circuit using potentiometers. ## Debugging & Additional Feature - Task 2 Si, Ge diodes were unstable and replaced them with Schottky diodes Figure 78. Multiplication Module made with Ge diode(left), Replacement of Ge Diodes with Schottky diode (right) Added decoupling capacitors to stable the ripples made in the input voltages Figure 79. Connecting decoupling Capacitors to +12V/-12V inputs of the module All circuit elements must be double checked before turning the power on. Figure 80.Exploded Capacitor (Left), Circuit Schematic (Middle) and Breadboard (Right), Source: Adapted from [3] Because LM7912C has a different voltage polarity to the LM7812C, the capacitor that is connected must be connected opposite of LM7812C. All circuit elements must be double checked before turning the power on. Figure 81.Power Module - Added heat sinks on both 7812 and 7912 where heat was dissipated the most. - Added bridge diodes just to make load, to dissipate somewhat voltage on the 7812 and 7912. ## Debugging & Additional Feature (Cont.) Figure 82.LED added on each end of the modules - Added LED lights to check if each module is powered correctly. - Green LED for +12V - Red LED for -12V ## **Role Division** Table 10. Role Division, Source: Made with Excel | Name | Role | |------|--| | | 1. Division Circuit Design | | ᄀᄌᅁ | 2. PSpice Simulation | | 고종완 | 3. Module Integration | | | 4. Power Supply Implementation | | | 1. Multiplication Circuit Design | | 강승엽 | 2. PSpice Simulation | | бон | 3. Module Integration | | | 4. Power Supply Implementation | | | 1. Addition / Subtraction Circuit Design | | 구완모 | 2. PSpice Simulation | | 十七工 | 3. Module Integration | | | 4. Power Supply Implementation | ## Project Timeline Figure 83.project Timeline, Source: Made from Visio ## Project Design Objective #### Arithmetic Operation - ➤ Addition √ - ➤ Subtraction √ - ➤ Multiplication √ - ➤ Division √ - ➤ Overall Output Result Error < 5% √</p> #### Function - ➤ Link output result back to input and calculate given inputs √ - ➤ Measure the result using an Analog Voltmeter √ - ➤ 12V input operation (Even with saturation regions, overall result was a success) √ #### Power Module - ➤ Stable Power Supply for Machine √ - ➤ Stable Output Voltage for Arithmetic Operations √ ## Limitations and Further Improvements #### Limits - The saturation current is sensitive to temperature. Therefore, if the diodes are not manufactured closely as possible in the silicon wafer, the output of this system will have higher errors than that of an equivalent IC chip. - ➤ With the Op Amps wired to +12V and -12V, we can not compute beyond this limit. - > Due to the saturation region in the circuits, it has a limited computing operations than expected. #### Further Improvements - ➤ We can improve this system by manufacturing this system on a single IC chip, instead of making this device using separate parts. - > We could get more precise results by stabilizing the input voltages, in other words improving a more stable power could reduce the errors. - > Tune or coordinate the circuits according to the simulation by replacing resistors or diodes. Circuit must be tuned until we gain the desired values. ## Components and Budget Table 12. Shipping Fee, Source: Made with Excel | No. | Shipping Fee | | Fee | | |--------------------|-------------------------------------|---|--------|--| | 1 | Device Mart (04/06) | ₩ | 2,700 | | | 2 | Device Mart (05/05) | ₩ | 2,700 | | | 3 | IC114 (05/05) | ₩ | 2,700 | | | 4 | IC114 (05/21) | ₩ | 2,700 | | | 5 | 원테크 (05/11) | ₩ | 3,000 | | | 6 | Si Tai&SH IC accessories Store | ₩ | 1,249 | | | 7 | Chip-IC Store | ₩ | 3,211 | | | 8 | AGUHAJSU Chinese chip Store | ₩ | 1,249 | | | 9 | Xin Chuang Instrument & Meter Store | ₩ | 10,167 | | | 10 | Yunbcc Store (05/04) | ₩ | 6,832 | | | 11 | Device Mart (05/09) | ₩ | 2,700 | | | 12 | IC114 (05/18) | ₩ | 2,700 | | | 13 | Device Mart (05/22) | ₩ | 2,700 | | | 14 | 입소문(05/23) | ₩ | 3,000 | | | 15 | Device Mart (05/27) | ₩ | 2,700 | | | Total Shipping Fee | | | 50,308 | | Table 13. Tax Fee, Source: Made with Excel | No. | Tax Fee | Fee | | |-----|----------------------|-----|-------| | 1 | Device Mart (04/06) | ₩ | 1,145 | | 2 | Device Mart (05/05) | ₩ | 950 | | 3 | IC114 (05/05) | ₩ | 2,408 | | 4 | IC114 (05/21) | ₩ | 2,580 | | 5 | 원테크 (05/11) | ₩ | 289 | | 6 | Yunbcc Store (05/04) | ₩ | 952 | | 7 | Device Mart (05/09) | ₩ | 140 | | 8 | IC114 (05/18) | ₩ | 180 | | 9 | Device Mart (05/22) | ₩ | 690 | | 10 | Device Mart (05/27) | ₩ | 170 | | | Total Tax Fee | ₩ | 9,504 | ## Components and Budget (Cont.) Table 13. Total Fee, Source: Made with Excel | No. | Description | Pcs. / Counts | | ₩ Cost | |-----|---------------------------------------|---------------|---|--------| | 1 | 1/4W 1% Axial Resistor 432F (1KΩ) | 50 | ₩ | 1,250 | | 2 | 1/4W 1% Axial Resistor 432F (4.3KΩ) | 50 | ₩ | 1,250 | | 3 | 1/4W 1% Axial Resistor 432F (10KΩ) | 50 | ₩ | 1,250 | | 4 | 1/4W 1% Axial Resistor 432F (1MΩ) | 50 | ₩ | 1,250 | | 5 | 1N4148 | 30 | ₩ | 450 | | 6 | LM358N | 20 | ₩ | 6,000 | | 7 | POWER AC CODE (220V용/1.5M) [P3211] | 1 | ₩ | 1,500 | | 8 | 범용 페놀 만능 PCB 기판 90X150-단면 [PCB-0915P] | 10 | ₩ | 4,400 | | 9 | SS-120BEL | 2 | ₩ | 3,600 | | 10 | 1N4004-0.7T 1N4004 | 40 | ₩ | 640 | | 11 | A2-40PA-DSA-11.5MM | 2 | ₩ | 240 | | 12 | CG50VF104Z06BS 0.1UF50VDC | 60 | ₩ | 1,800 | | 13 | FH01-04SSJ1-4PDSA | 20 | ₩ | 1,000 | | 14 | IR10MM-101(100uH) | 20 | ₩ | 5,000 | | 15 | JB-600BK JB600BK | 14 | ₩ | 3,500 | | 16 | JB-600R JB600R | 6 | ₩ | 1,500 | | 17 | KA431AZ431 | 10 | ₩ | 1,400 | | 18 | KMG107M1E100UF25V | 20 | ₩ | 900 | | 19 | KMG227M1E220UF25V | 20 | ₩ | 1,200 | | 20 | MC7912CTG7912(RoHS) | 10 | ₩ | 3,900 | # Components and Budget (Cont.) | No. | Description | Pcs. / Counts | | ₩ Cost | |-----|---|---------------|---|--------| | 21 | NJM7812A7812A | 10 | ₩ | 2,000 | | 22 | 2401-20SL-B5KVR24MM5K | 4 | ₩ | 2,000 | | 23 | 3296W-502-LF(58W-502) SVR5K-3296 | 20 | ₩ | 5,000 | | 24 | HSE-2513SPCB-2513S | 2 | ₩ | 16,000 | | 25 | HS-RN-B01-6.0B01 | 4 | ₩ | 2,800 | | 26 | 바나나 플러그-바나나 플러그 케이블 1M (black) | 2 | ₩ | 4,000 | | 27 | 바나나 플러그-바나나 플러그 케이블 1M (red) | 8 | ₩ | 16,000 | | 28 | 10PCS IC Sockets DIP8 | 5 | ₩ | 3,935 | | 29 | 10PCS LM358P DIP8 | 5 | ₩ | 3,750 | | 30 | 100pcs/lot 1N4148 | 1 | ₩ | 600 | | 31 | 100pcs Metal film resistor series 1/4W 1% 1M | 2 | ₩ | 1,100 | | 32 | 100pcs Metal film resistor series 1/4W 1% 10k | 2 | ₩ | 1,100 | | 33 | 100pcs Metal film resistor series 1/4W 1% 1k | 2 | ₩ | 1,100 | | 34 | 100pcs Metal film resistor series 1/4W 1% 4.3k | 2 | ₩ | 1,100 | | 35 | YX-360TRd Analog Multimeter AC DC Volt Ohm Current Testing Electrical Multitester | 1 | ₩ | 18,255 | | 36 | 85C1 DC Analog Panel Volt Voltage Meter Voltmeter Gauge Mechanical Voltage Meter 5V | 6 | ₩ | 7,758 | | 37 | 50W Power Transformer Input AC 220V 50HZ Output AC 15V Dual | 1 | ₩ | 35,184 | | 38 | 핀헤더 Single 1x40Pin Straight(2.54mm) | 10 | ₩ | 1,400 | | 39 | Schottky Diode 40V,30mA,VF0.37V | 30 | ₩ | 1,800 | | 40 | 바나나잭(JB-601) 옵션: 파랑 | 2 | ₩ | 1,200 | # Components and Budget (Cont.) | No. | Description | Pcs. / Counts | | ₩ Cost | |-----|-------------------------------------|---------------|---|---------| | 41 | 바나나잭(JB-601) 옵션: 노랑 | 4 | ₩ | 2,400 | | 42 | 스프링와샤 M2 | 10 | ₩ | 200 | | 43 | 스텐 둥근머리 십자볼트 M2x12 | 10 | ₩ | 400 | | 44 | PCB 서포트 황동 2.5 파이 M-7mm [SZH-SUP01] | 10 | ₩ | 2,100 | | 45 | 고무발 라디오발 옵션 선택 (S-1 / 18*10H) | 10 | ₩ | 600 | | 46 | 5T 아크릴 검정 260*140 도면가공 | 1 | ₩ | 8,000 | | 47 | 3T 아크릴 검정 266*205 도면가공 | 1 | ₩ | 8,000 | | 48 | 3T 아크릴 검정 140*205 도면가공 | 2 | ₩ | 3,200 | | 49 | 2T 아크릴 검정 140*205 도면가공 | 1 | ₩ | 1,900 | | 50 | 너트 (니켈) M2 | 10 | ₩ | 100 | | 51 | PCB 서포트 황동 2 파이 M-5mm | 8 | ₩ | 1,600 | | 52 | Total Tax Fee | 9 | ₩ | 9,504 | | 53 | Total Shipping Fee | 14 | ₩ | 50,308 | | 54 | Total Amount | | ₩ | 256,424 | #### Reference - [1] Texas Instruments "TLV9364" ti.com. https://www.ti.com/product/TLV9364 (accessed Mar. 25, 2022). - [2] Analog Museum "GTE EA-22" analogmuseum.org. http://www.analogmuseum.org/english/collection/gte/ea22/ (accessed Mar. 25, 2022). - ➤ [3] OrCAD Pspice Designer. (16.6). OrCAD. Accessed: Apr. 24, 2022. [Online]. Available: https://www.orcad.com/pspice-free-trial - ▶ [4] James W. Nilsson, Susan A. Riedel, "Electric Circuits," Pearson, 10th Edition, 2015, pp.145 165 - > [5] WIKIPEDIA "Log Amplifier" wikipedia.org. https://en.wikipedia.org/wiki/Log_amplifier (accessed May. 25, 2022). - ➤ [6] WIKIPEDIA "Operational amplifier" wikipedia.org. https://en.wikipedia.org/wiki/Operational_amplifier (accessed May. 25, 2022). - [7] Fairchild Semiconductor, "LM78XX/LM78XXA 3-Terminal 1A Positive Voltage Regulator," LM7812 datasheet, Apr. 2010 [Revised Apr. 2010]. - [8] Fairchild Semiconductor, "KA79XX/KA79XXA/LM79XX 3-Terminal 1A Positive Voltage Regulator," LM7912 datasheet, Aug. 2013 [Revised Aug. 2013]. - > [9] Behzad Razavi, "Fundamentals of Microelectronics," Wiley, 2nd Edition, 2013, pp.59 113 - [10] WIKIPEDIA "DC Current" wikipedia.org. https://en.wikipedia.org/wiki/Direct_current (accessed May. 25, 2022). - ➤ [11] MATLAB. R 2021b. MathWorks. Accessed: Apr. 24, 2022. [Online]. Available: https://www.mathworks.com/products/matlab-online.html - ➤ [12] Fusion 360. Evaluation. AUTODESK. Accessed: Jun. 24, 2022. [Online]. Available: https://www.autodesk.co.kr/products/fusion-360/overview?term=1-YEAR&tab=subscription # **Q&A**